KORK ERKER ADA DI VOLO

On higher regulators of Picard modular surfaces

Linli Shi

University of Connecticut

UC San Diego Number Theory Seminar November 20, 2024

KORK EXTERNE PROVIDE

Table of Contents

- **[Introduction](#page-2-0)**
	- Riemann *C*[-function](#page-3-0)
	- Dedekind ζ[-functions](#page-6-0)
	- [BSD conjecture](#page-8-0)
	- [Beilinson's conjectures](#page-9-0)
- 2 [Key definitions](#page-17-0)
	- [Algebraic groups](#page-18-0)
	- **•** [Shimura varieties](#page-20-0)
	- [Automorphic motives](#page-22-0)
	- [The Main Result](#page-24-0)
		- [Connection to](#page-26-0) L-values
		- [Hodge vanishing on the boundary](#page-32-0)
		- [Motivic vanishing on the boundary](#page-34-0)

KORK EXTERNE PROVIDE

Table of Contents

- **[Introduction](#page-2-0)**
	- Riemann *C*[-function](#page-3-0)
	- Dedekind ζ[-functions](#page-6-0)
	- [BSD conjecture](#page-8-0)
	- [Beilinson's conjectures](#page-9-0)

[Key definitions](#page-17-0)

- [Algebraic groups](#page-18-0)
- [Shimura varieties](#page-20-0)
- **•** [Automorphic motives](#page-22-0)
- [The Main Result](#page-24-0)
	- [Connection to](#page-26-0) L-values
	- [Hodge vanishing on the boundary](#page-32-0)
	- [Motivic vanishing on the boundary](#page-34-0)

[Introduction](#page-2-0) [The Main Result](#page-24-0) (New York Main Result and Main

Euler's calculations

In the 1700s, Euler made the following famous computations:

Notice similar exponents.

KORK EXTERNE PROVIDE

Euler's calculations

Definition

Bernoulli numbers $B_k \in \mathbb{Q}$ are given by the expansion

$$
\frac{t}{e^t-1} = \sum_{k\geq 0} B_k \frac{t^k}{k!} = 1 - \frac{1}{2}t + \frac{1}{6} \cdot \frac{t^2}{2} - \frac{1}{30} \cdot \frac{t^4}{4!} + \cdots
$$

Euler showed the following formula:

$$
1+\frac{1}{2^{2m}}+\frac{1}{3^{2m}}+\frac{1}{4^{2m}}+\cdots=\frac{(2\pi)^{2m}|B_{2m}|}{2(2m)!}, \text{ for } m \in \mathbb{Z}^+.
$$

Examples

•
$$
(m = 1) \ 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{(2\pi)^2}{2 \cdot 2} \cdot \frac{1}{6} = \frac{\pi^2}{6}
$$

\n• $(m = 2) \ 1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \cdots = \frac{(2\pi)^4}{2 \cdot 4!} \cdot \frac{1}{30} = \frac{\pi^4}{90}$

 2990

[Introduction](#page-2-0) [The Main Result](#page-24-0) (New York Main Result and Main

Riemann ζ-function

In 1859, Riemann introduced the ζ-function of a complex variable: if $s \in \mathbb{C}$,

- $\zeta(\mathsf{s}) := \sum$ n≥1 1 $\frac{1}{n^s}$ for $\text{Re}(s) > 1$.
- (Euler product): $\zeta(\mathfrak{s}) = \prod$ p $\frac{1}{1-\frac{1}{\rho^s}}$ for $\text{Re}(s)>1$.
- \bullet It has meromorphic continuation to \mathbb{C} .
- It has a (simple) pole only at $s = 1$.

\n- (Functional eqn):
$$
\Lambda(s) = \Lambda(1-s)
$$
 for $\Lambda(s) := \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \zeta(s)$.
\n- Call $\pi^{-\frac{s}{2}} \Gamma(\frac{s}{2})$ a Γ -factor.
\n

KORK EXTERNE PROVIDE

Dedekind ζ-function

Dedekind (1879) generalized $\zeta(s)$ to an arbitrary number field F.

 $\zeta_{\mathcal{F}}(\bm{s}) := \sum_{\mathcal{I}} \frac{1}{|\mathcal{O}_{\mathcal{F}}/\mathcal{I}|^{\bm{s}}}, \text{ for } \text{Re}(\bm{s}) > 1,$ where I runs over the non-zero ideals of O_F , so $\zeta_{\mathbb{O}}(s) = \zeta(s)$.

\n- (Euler product):
\n- $$
\zeta_F(s) = \prod_{\wp} \frac{1}{1 - \frac{1}{|\mathcal{O}_F/\wp|^s}}
$$
 for $\text{Re}(s) > 1$, where \wp runs over the non-zero prime ideals of \mathcal{O}_F .
\n

- \circ $\zeta_F(s)$ has meromorphic continuation to \mathbb{C} .
- $\circ \zeta_F(s)$ has a (simple) pole only at $s=1$.
- (Functional eqn): $\Lambda_F(s) = \Lambda_F(1-s)$ for $\Lambda_F(s) :=$ $|d_{\mathcal{F}}|^{\frac{s}{2}} (\pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}))^{r_1} ((2\pi)^{-s} \Gamma(s))^{r_2} \zeta_{\mathcal{F}}(s).$

KORKAR KERKER ST VOOR

Class number formula

The residue of $\zeta_F(s)$ at $s=1$ is related to global arithmetic invariants of F by the class number formula:

$$
\mathrm{Res}_{s=1}\zeta_{F}(s)=\frac{2^{r_{1}}(2\pi)^{r_{2}}}{|d_{F}|^{\frac{1}{2}}\omega(F)}h(F)R(F)=_{\overline{\mathbb{Q}}}\times(2\pi)^{r_{2}}R(F).
$$

- \bullet d_F: discriminant of F
- \bullet $\omega(F)$: the number of roots of unity in F
- $h(F)$: class number of F
- \bullet $R(F)$: covolume of Dirichlet regulator map

$$
r_{Dir}: O_F^\times \to \mathbb{R}^{r_1+r_2},
$$

dim Im $(r_{Dir}) = r_1 + r_2 - 1$. $\mathcal{F}_F^2 - 1$.
 $\mathcal{F}_F^{\times}/\{\pm 1\} = (1 + \sqrt{2})^{\mathbb{Z}}$, e.g. $F = \mathbb{Q}(\sqrt{2})$, O_F^{\times} e.g. $r = \psi(\sqrt{2})$, $\upsilon_F / {\pm 1} = (1 + \sqrt{2})^2$,
 $r_{Dir}(1 + \sqrt{2}) = (\log(1 + \sqrt{2}))$, $-\log(1 + \sqrt{2}))$, $r_{Dir}(1 + \sqrt{2}) = \log(1 + \sqrt{2})$

KORK ERKER ADAM ADA

BSD conjecture

- \bullet For an elliptic curve E over $\mathbb Q$, we can define its L-function $L(E, s)$ and regulator $R(E)$ similarly.
- Birch and Swinnerton–Dyer conjecture predicts that

$$
\frac{L^{(r)}(E,1)}{r!} =_{\mathbb{Q}^{\times}} \Omega(E)R(E),
$$

where

\n- \n
$$
r = \text{ord}_{s=1}L(E, s)
$$
, so\n $\frac{L^{(r)}(E, s)}{r!}$ is lead. coeff. of $L(E, s)$ at $s = 1$.\n
\n- \n $\Omega(E)$: the period of E .\n
\n- \n $E: y^2 = x^3 - 2, r = 1, E(\mathbb{Q})/E(\mathbb{Q})_{\text{tor}} = \langle P \rangle = \langle (3, 5) \rangle$ \n $\Omega(E) \approx 2.16368, R(E) = \hat{h}(P) \approx 1.34957$ \n $\Omega(E)R(E) \approx 2.92003, L'(E, 1) \approx 2.92005, L'(E, 1) = \Omega(E)R(E)$ \n
\n

Beilinson's conjectures

In the 1980s, Beilinson made a deep conjecture about special values of motivic L-functions generalizing the classical analytic class number formula.

Let X be a smooth projective variety over $\mathbb{Q}, i \geq 0$ and $n \in \mathbb{Z}$ satisfying $2n > i$. Replace ingredients of class number formula:

 $O_F^{\times} \rightsquigarrow H^{i+1}_{M}(X,\mathbb{Q}(n))$ (Motivic cohomology)

• If
$$
2n = i + 1
$$
, then $H_{M}^{i+1}(X, \mathbb{Q}(n)) \cong \mathrm{CH}^{n}(X)_{\mathbb{Q}}$.

If $n = 1$, $i = 0$, then $\mathop{H_ M}\nolimits^{i + 1}(X, \mathbb{Q}(n)) = \mathop{H_ M}\nolimits^{1}(X, \mathbb{Q}(1)) \cong \mathbb{Q}(X)^{\times}$.

Beilinson's conjectures

In the 1980s, Beilinson made a deep conjecture about special values of motivic L-functions generalizing the classical analytic class number formula.

Let X be a smooth projective variety over $\mathbb{Q}, i \geq 0$ and $n \in \mathbb{Z}$ satisfying $2n > i$. Replace ingredients of class number formula:

- $O_F^{\times} \rightsquigarrow H^{i+1}_{M}(X,\mathbb{Q}(n))$ (Motivic cohomology)
	- If $2n = i + 1$, then $\mathrm{H}^{i+1}_M(X, \mathbb{Q}(n)) \cong \mathrm{CH}^n(X)_{\mathbb{Q}}$.
	- If $n = 1$, $i = 0$, then $\mathop{H_ M}\nolimits^{i+1}(X, \mathbb Q(n)) = \mathop{H_ M}\nolimits^1(X, \mathbb Q(1)) \cong \mathbb Q(X)^\times$.
- $\mathbb{R}^{r_1+r_2}\leadsto \mathrm{H}_{H}^{i+1}$ $_H^{i+1}(X,\mathbb{R}(n))$ (Absolute Hodge cohomology)

Beilinson's conjectures

In the 1980s, Beilinson made a deep conjecture about special values of motivic L-functions generalizing the classical analytic class number formula.

Let X be a smooth projective variety over $\mathbb{Q}, i \geq 0$ and $n \in \mathbb{Z}$ satisfying $2n > i$. Replace ingredients of class number formula:

 $O_F^{\times} \rightsquigarrow H^{i+1}_{M}(X,\mathbb{Q}(n))$ (Motivic cohomology)

• If
$$
2n = i + 1
$$
, then $H^{i+1}(X, \mathbb{Q}(n)) \cong \mathrm{CH}^n(X)_{\mathbb{Q}}$.

- If $n = 1$, $i = 0$, then $\mathop{H_ M}\nolimits^{i+1}(X, \mathbb Q(n)) = \mathop{H_ M}\nolimits^1(X, \mathbb Q(1)) \cong \mathbb Q(X)^\times$.
- $\mathbb{R}^{r_1+r_2}\leadsto \mathrm{H}_{H}^{i+1}$ $_H^{i+1}(X,\mathbb{R}(n))$ (Absolute Hodge cohomology)

 \bullet r_{Dir} \rightsquigarrow r_H

 $r_H: \mathrm{H}^{i+1}_M(X, \mathbb{Q}(n)) \to \mathrm{H}^{i+1}_H$ $_H^{i+1}(X,\mathbb{R}(n))$ (Beilinson's higher regulator)

[Introduction](#page-2-0) [The Main Result](#page-24-0) (New York Main Result and Main

KORKARYKERKER POLO

- $M = h^{i}(X)(n)$: a pure motive associated to X and n.
	- $w = i 2n$: its weight, so $2n > i$ implies $w < 0$.
- \bullet $\zeta_F(s) \rightsquigarrow L(M,s)$ (Motivic L-function),
	- For $\text{Re}(s) > \frac{w}{2} + 1$, $L(M, s)$ is convergent Euler product.
	- A meromorphic cont. and functional equation of $L(M, s)$ relating s and $w + 1 - s$ is conjectured, mainly still open.
	- $w < 0 \Rightarrow w \le -1$, so $0 \ge \frac{w+1}{2}$: center of $L(M, s)$.

- $M = h^{i}(X)(n)$: a pure motive associated to X and n.
	- $w = i 2n$: its weight, so $2n > i$ implies $w < 0$.
- $\bullet \, \zeta_F(s) \rightsquigarrow L(M, s)$ (Motivic L-function),
	- For $\text{Re}(s) > \frac{w}{2} + 1$, $L(M, s)$ is convergent Euler product.
	- A meromorphic cont. and functional equation of $L(M, s)$ relating s and $w + 1 - s$ is conjectured, mainly still open.
	- $w < 0 \Rightarrow w \le -1$, so $0 \ge \frac{w+1}{2}$: center of $L(M, s)$.
- Critical points vs. Non-critical points Let $\Gamma_{\infty}(M,s)$ be associated Gamma factor of $L(M,s)$. Call $n \in \mathbb{Z}$ critical for $L(M, s)$ if it is not a pole of $\Gamma_{\infty}(M, s)$ or $\Gamma_{\infty}(M, w+1-s)$. Otherwise, $n \in \mathbb{Z}$ is called non-critical.

- $M = h^{i}(X)(n)$: a pure motive associated to X and n.
	- $w = i 2n$: its weight, so $2n > i$ implies $w < 0$.
- \bullet $\zeta_F(s) \rightsquigarrow L(M, s)$ (Motivic L-function),
	- For $\text{Re}(s) > \frac{w}{2} + 1$, $L(M, s)$ is convergent Euler product.
	- A meromorphic cont. and functional equation of $L(M, s)$ relating s and $w + 1 - s$ is conjectured, mainly still open.
	- $w < 0 \Rightarrow w \le -1$, so $0 \ge \frac{w+1}{2}$: center of $L(M, s)$.
- Critical points vs. Non-critical points Let $\Gamma_{\infty}(M,s)$ be associated Gamma factor of $L(M,s)$. Call $n \in \mathbb{Z}$ critical for $L(M, s)$ if it is not a pole of $\Gamma_{\infty}(M, s)$ or $\Gamma_{\infty}(M, w+1-s)$. Otherwise, $n \in \mathbb{Z}$ is called non-critical.
	- For $\zeta(s)$, $w = 0$, $\Gamma_{\infty}(\mathbb{Q}, s) = \pi^{-s/2} \Gamma(s/2)$, critical points are positive even integers and negative odd integers. Non-critical points are positive odd integers and non-positive even integers.

- $M = h^{i}(X)(n)$: a pure motive associated to X and n.
	- $w = i 2n$: its weight, so $2n > i$ implies $w < 0$.
- \bullet $\zeta_F(s) \rightsquigarrow L(M, s)$ (Motivic L-function),
	- For $\text{Re}(s) > \frac{w}{2} + 1$, $L(M, s)$ is convergent Euler product.
	- A meromorphic cont. and functional equation of $L(M, s)$ relating s and $w + 1 - s$ is conjectured, mainly still open.
	- $w < 0 \Rightarrow w \le -1$, so $0 \ge \frac{w+1}{2}$: center of $L(M, s)$.
- Critical points vs. Non-critical points Let $\Gamma_{\infty}(M,s)$ be associated Gamma factor of $L(M,s)$. Call $n \in \mathbb{Z}$ critical for $L(M, s)$ if it is not a pole of $\Gamma_{\infty}(M, s)$ or $\Gamma_{\infty}(M, w+1-s)$. Otherwise, $n \in \mathbb{Z}$ is called non-critical.
	- For $\zeta(s)$, $w = 0$, $\Gamma_{\infty}(\mathbb{Q}, s) = \pi^{-s/2} \Gamma(s/2)$, critical points are positive even integers and negative odd integers. Non-critical points are positive odd integers and non-positive even integers.
	- For $L(E, s)$, $w = 1$, $\Gamma_{\infty}(E, s) = 2(2\pi)^{-s}\Gamma(s)$, critical point is $s = 1$. Non-critical points are integers not equal to 1. K ロ X K 레 X K 할 X K 할 X 및 할 X 이익(N

[Introduction](#page-2-0) [The Main Result](#page-24-0) (New York Main Result and Main

Beilinson's conjectures

• If $s = 0$ is critical for M, Deligne conjectured that

 $\mathsf{L}(M,0)\in c^+(M){\mathbb Q}^\times\, \big|,$

where $c^{+}(M)$ is Deligne period. e.g. If $M = \mathbb{Q}(2m)$ for $m \in \mathbb{Z}_{>0}$, then $L(M, s) = \zeta(s + 2m)$ and $c^+(M) = (2\pi i)^{2m}$: Euler's $\zeta(2m)$ -formula.

• If $s = 0$ is non-critical for M and $2n > i + 3$, then $w=i-2n\leq-3$ and $\frac{w}{2}+1\leq-\frac{1}{2}<$ 0, so $\mathcal{L}(\mathcal{M},0)$ makes sense as an Euler product. Beilinson conjectured that

 $\wedge^{\textsf{top}} r_H(H^{i+1}_M(X,{\mathbb Q}(n))) =_{\mathbb Q^\times} L(M,0) \mathcal{D}(M),$

where $D(M)$ is the Deligne rational structure. e.g. If $M = \mathbb{Q}(3)$, $L(M, s) = \zeta(s + 3)$, so $L(M, 0) = \zeta(3)$, $r_H = 2r_B$ $r_H = 2r_B$, wh[e](#page-8-0)re $r_B : K_5(\mathbb{Z}) \to \mathbb{R}$ is [a](#page-15-0) [Bo](#page-17-0)r[el](#page-16-0) [r](#page-17-0)e[g](#page-9-0)[u](#page-16-0)[la](#page-17-0)tor[.](#page-17-0)

KORK EXTERNE PROVIDE

Table of Contents

[Introduction](#page-2-0)

- Riemann C[-function](#page-3-0)
- Dedekind ζ[-functions](#page-6-0)
- [BSD conjecture](#page-8-0)
- [Beilinson's conjectures](#page-9-0)

2 [Key definitions](#page-17-0)

- [Algebraic groups](#page-18-0)
- **•** [Shimura varieties](#page-20-0)
- [Automorphic motives](#page-22-0)

[The Main Result](#page-24-0)

- [Connection to](#page-26-0) L-values
- [Hodge vanishing on the boundary](#page-32-0)
- [Motivic vanishing on the boundary](#page-34-0)

KORK EXTERNE PROVIDE

The setup

Notations

- Let E be an imaginary quadratic field of discriminant $-D$, and let $x \mapsto \overline{x}$ be the nontrivial Galois automorphism of E over \mathbb{O} .
- Let $\mathcal O$ be the ring of integers of E .
- Fix an identification of $E \otimes_{\mathbb{Q}} \mathbb{R}$ with \mathbb{C} s.t. the imaginary part Fix an identification of E
of $\delta := \sqrt{-D}$ is positive.

The group $G = GU(2, 1)$

Definition

Let $J \in GL_3(E)$ be the Hermitian matrix

$$
J = \begin{pmatrix} 0 & 0 & \frac{1}{\delta} \\ 0 & 1 & 0 \\ -\frac{1}{\delta} & 0 & 0 \end{pmatrix}, \quad \text{where } \delta = \sqrt{-D},
$$

and let $G = GU(2, 1)$ be the group scheme over $\mathbb Z$ such that for $\mathbb Z$ -algebras R , we have for units $\mu \in R^{\times}$,

$$
G(R) = \{ (g, \mu) \in \mathrm{GL}_3(\mathcal{O} \otimes_{\mathbb{Z}} R) \times R^{\times} | \, {}^t\bar{g} Jg = \mu J \}.
$$

Let H be the group scheme over $\mathbb Z$ such that for $\mathbb Z$ -algebras R,

$$
H(R)=\{(g,z)\in \operatorname{GL}_2(R)\times (\mathcal{O}\otimes_{\mathbb{Z}} R)^\times|\det(g)=z\bar{z}\}.
$$

KORK EXTERNE PROVIDE

Modular curves

Definition

Let $\mathcal{H} = \{\tau = x + iy | x \in \mathbb{R}, y \in \mathbb{R}_{>0}\}\$ be the upper half plane. Let $\Gamma = SL_2(\mathbb{Z})$, acting on H by

$$
\tau \mapsto \frac{a\tau + b}{c\tau + d}.
$$

The modular curve $Y(1)$ is defined as

$$
Y(1):=\Gamma\backslash \mathcal{H}.
$$

It is an affine algebraic curve over Q.

Picard modular surfaces

- Picard modular surfaces are certain 2-dimensional Shimura varieties over E that generalize modular curves over $\mathbb Q$.
- $\mathcal{H} \rightsquigarrow$ complex 2-ball X in \mathbb{C}^2 $(|z_1|^2 + |z_2|^2 < 1)$
- \bullet SL₂(\mathbb{Z}) \rightsquigarrow $\Gamma = \mathsf{GU}(2,1)(\mathbb{Z})$ (Picard modular group)
- **•** Picard modular surface of level Γ is defined as $\text{Sh}_G(\Gamma) := \Gamma \backslash X$
- \bullet Picard modular surfaces are algebraic surfaces over E . (Note E used to define J which appears in the definition of G .)

Charles Émile Picard **Charles Emile Picard** Goro Shimura

KORKARYKERKER POLO

Galois representations

• For an elliptic curve E/\mathbb{Q} which is defined by the equation $y^2=x^3+ax+b$, where $a,b\in\mathbb{Q}$, for a fixed prime p , its Tate module $T_p(E)$ is defined as

$$
T_p(E) = \varprojlim_n E[p^n]
$$

where $E[p^n]$ is the p^n -torsion points of E.

- There is a natural action ρ_E of Gal($\overline{Q}/\overline{Q}$) on $T_p(E)$ called the p -adic Galois representation associated to E .
- For a cusp form f with weight 2 and level $\Gamma_0(N)$, can define its Galois representation ρ_f .
- [C. Breuil-B. Conrad-F. Diamond-R. Taylor 1999] To each E/\mathbb{Q} , $\rho_E \cong \rho_f$ for some f of weight 2.
- Galois representations are étale realizations of motives.

Automorphic motives

- \bullet For a cusp form f, can construct its Grothendieck motive $M(f)$ by work of Scholl.
- \bullet GL₂ \rightsquigarrow GU(2, 1)

 \bullet

 \bullet

$$
f\leadsto \pi=\pi_f\otimes \pi_\infty,
$$

where π is some "cohomological" irreducible cuspidal automorphic representation of $GU(2,1)$.

 \bullet π can be thought as some kind of Picard modular form.

$$
M(f) \rightsquigarrow M(\pi_f, V),
$$

where the $\mathcal{M}(\pi_{f},\mathcal{V})$ is a Grothendieck motive associated to $\pi.$

KORK EXTERNE PROVIDE

Table of Contents

[Introduction](#page-2-0)

- Riemann C[-function](#page-3-0)
- Dedekind ζ[-functions](#page-6-0)
- [BSD conjecture](#page-8-0)
- [Beilinson's conjectures](#page-9-0)
- [Key definitions](#page-17-0)
	- [Algebraic groups](#page-18-0)
	- [Shimura varieties](#page-20-0)
	- **•** [Automorphic motives](#page-22-0)

[The Main Result](#page-24-0)

- [Connection to](#page-26-0) L-values
- [Hodge vanishing on the boundary](#page-32-0)
- [Motivic vanishing on the boundary](#page-34-0)

Outline

Beilinson's conjectures

When
$$
2n \geq i + 3
$$
 and dim _{\mathbb{R}} $H_H^{i+1}(X, \mathbb{R}(n)) = 1$,

$$
r_{H}(H_{M}^{i+1}(X,\mathbb{Q}(n))) =_{\mathbb{Q}^{\times}} L(M,0)\mathcal{D}(M).
$$

Let $S := Sh_G$, $G = GU(2, 1)$ and $M = Sh_H$.

- **Step one**: Construct motivic classes c in $H_M^3(S, V(2))$, where S is the Picard modular surface and V is some non-trivial nice "motivic local system" on it;
- **Step two**: Prove that the classes c lie in a "nice" subspace of $\mathrm{H}^3_M(\mathcal{S},\mathcal{V}(2))$;
- Step three: Compute image of c under higher regulator r_H and relate to $L(M(\pi_f,V(2)),0).$

The L-value result I

Theorem (S. 2024)

For suitable non-trivial algebraic representations V of G, if we choose some "cohomological" irreducible cuspidal automorphic representation π of G that appears in $\mathrm{H}^2_{B, !}(S, V(2))$, we get:

$$
\mathcal{K}(\pi_f, V(2)) = C \cdot L(M(\pi_f, V(2)), 0) \mathcal{D}(\pi_f, V(2))
$$

where $C \in (E(\pi_f) \otimes_{\mathbb{Q}} \mathbb{C})^{\times}$,

- $M(\pi_f, V(2))$ is a motive associated to π .
- $\mathcal{K}(\pi_f,\mathcal{V}(2))$: 1-dim $\mathsf{E}(\pi_f)$ -subspace of a certain rank one $E(\pi_f) \otimes_{\mathbb{Q}} \mathbb{R}$ -module generated by $r_H(c)$, c is the constructed motivic class in $\mathrm{H}^3_M(S, V(2))$.
- $\mathcal{D}(\pi_f,\mathcal{V}(2))$: another 1-dim $\mathsf{E}(\pi_f)$ -subspace of the same $E(\pi_f) \otimes_{\mathbb{Q}} \mathbb{R}$ -module, called the Deligne $E(\pi_f)$ -structure.

The L-value result II

Remark

- This result gives evidence towards Beilinson's conjectures.
- Constant C should be in $E(\pi_f)^{\times}$ but we have not proven it.
- $\mathcal{K}(\pi_f, V(2)) = C \cdot L(M(\pi_f, V(2)), 0) \mathcal{D}(\pi_f, V(2)), C \neq 0,$ $\mathcal L(M(\pi_f,V(2)),0)\neq 0$ and $\mathcal D(\pi_f,V(2))\neq \{0\}$, so we proved the motivic class c that generates the left side is non-trivial, which answers a question raised in [D. Loeffler-C. Skinner-S. Zerbes 2022]. In their paper, they assume the class c is non-trivial and use it to construct an Euler system for GU(2, 1) based on the nontriviality.

The L-value result II

Remark

- This result gives evidence towards Beilinson's conjectures.
- Constant C should be in $E(\pi_f)^{\times}$ but we have not proven it.
- $\mathcal{K}(\pi_f, V(2)) = C \cdot L(M(\pi_f, V(2)), 0) \mathcal{D}(\pi_f, V(2)), C \neq 0,$ $\mathcal L(M(\pi_f,V(2)),0)\neq 0$ and $\mathcal D(\pi_f,V(2))\neq \{0\}$, so we proved the motivic class c that generates the left side is non-trivial, which answers a question raised in [D. Loeffler-C. Skinner-S. Zerbes 2022]. In their paper, they assume the class c is non-trivial and use it to construct an Euler system for $GU(2, 1)$ based on the nontriviality.
- \bullet If V is trivial, similar results were obtained in [A. Pollack-S. Shah 2018].
- Similar relations with non-trivial coefficients were obtained in [G. Kings 1998] and [F. Lemma 2017].

The construction of motivic classes

• Starting point: [Beilinson 83] The Eisenstein symbol:

$$
B_n \mathop{\longrightarrow}^{\text{Eis}_M^n} \mathrm{H}^1_M({\operatorname{Sh}}_{\mathrm{GL}_2}, {\operatorname{Sym}}^n V_2(1)),
$$

where ${\rm Sh}_{\mathrm{GL}_2}$ is a modular curve. It can be seen as incarnation of real analytic Eisenstein series in the motivic world.

• Define the following two maps:

$$
\iota: H \hookrightarrow G, \quad (\begin{pmatrix} a & b \\ c & d \end{pmatrix}, z) \mapsto (\begin{pmatrix} a & 0 & b \\ 0 & z & 0 \\ c & 0 & d \end{pmatrix}, z\overline{z})
$$

and

$$
p: H \twoheadrightarrow \mathrm{GL}_2, \quad \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, z\right) \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix}
$$

• The maps $\iota : H \hookrightarrow G$ and $p : H \rightarrow GL_2$ of algebraic groups will induce the following morphisms of Shimura varieties:

$$
\rho:M=\operatorname{Sh}_{\mathcal{H}}\rightarrow\operatorname{Sh}_{\operatorname{GL}_2},\,\,\iota:M=\operatorname{Sh}_{\mathcal{H}}\rightarrow\underset{\scriptscriptstyle{\ast}\in\mathcal{S}}{\sum}=\operatorname{Sh}_{\mathcal{G}_{\frac{\simeq}{\leq}}}\rho_{\frac{\simeq}{\leq}}\quad,\quad\text{and}\quad\sigma\in\mathcal{G}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

The construction of motivic classes

The construction II

$$
B_n \xrightarrow{Eis_M^p} H_M^1(\text{Sh}_{GL_2}, \text{Sym}^n V_2(1)) \xrightarrow{\rho^*} H_M^1(M, W(1)) \xrightarrow{\iota_*} H_M^3(S, V(2))
$$

$$
\phi_f \downarrow \longrightarrow \text{Eis}_M^n(\phi_f) \downarrow \longrightarrow p^* \text{Eis}_M^n(\phi_f) \downarrow \longrightarrow c = \iota_* p^* \text{Eis}_M^n(\phi_f)
$$

The construction of motivic classes

The construction II

$$
\mathcal{B}_n \xrightarrow{\text{Eis}_M^q} \text{H}^1_M(\text{Sh}_{\text{GL}_2}, \text{Sym}^n V_2(1)) \xrightarrow{\rho^*} \text{H}^1_M(M, W(1)) \xrightarrow{\iota_*} \text{H}^3_M(S, V(2))
$$

$$
\phi_f \downarrow \qquad \qquad \Rightarrow \mathrm{Eis}_M^n(\phi_f) \downarrow \qquad \qquad \Rightarrow p^* \mathrm{Eis}_M^n(\phi_f) \downarrow \qquad \qquad \Rightarrow c = \iota_* p^* \mathrm{Eis}_M^n(\phi_f)
$$

Remark

- The construction is due to [D. Loeffler-C. Skinner-S. Zerbes 2022].
- When $V = \mathbb{Q}$, [A. Pollack-S. Shah 2018] gave an essentially similar construction of motivic classes.

The Hodge result

Notations

 \mathcal{E} is $^n_M := \iota_* \circ p^* \circ \mathsf{Eis}^n_M$

$$
\bullet \; \mathcal{E} \mathrm{is}^n_H := r_H(\mathcal{E} \mathrm{is}^n_M)
$$

 $\mathrm{H}^2_{B,l}(S,V(2)):=\mathrm{Im}(\mathrm{H}^2_{B,c}(S,V(2))\rightarrow \mathrm{H}^2_{B}(S,V(2)))$

Theorem (S. 2024)

For suitable non-trivial algebraic representations V of G , the map ${\cal E}$ is $^n_H:{\cal B}_{n,{\mathbb R}}\to {\rm H}^3_H(S,V(2))$ factors through the inclusion

$$
\mathsf{{Ext}}^1_{\mathrm{MHS}^+_{{\mathbb R}}}(\mathbf{1},\mathrm{H}^2_{B,!}(S,V(2))) \hookrightarrow \mathrm{H}^3_H(S,V(2)),
$$

where $\mathrm{MHS}_\mathbb{R}^+$ is the abelian category of mixed $\mathbb{R}\text{-}\mathsf{Hodge}$ structures and 1 denotes trivial Hodge structure, i.e., the unit of $\mathrm{MHS}_{\mathbb{R}}^+$.

Remarks on Theorem

Theorem (S. 2024)

For suitable non-trivial algebraic representations V of G , the map ${\cal E}$ is $^n_H:{\cal B}_{n,{\mathbb R}}\to {\rm H}^3_H(S,V(2))$ factors through the inclusion

 $\mathsf{Ext}^1_{\mathrm{MHS}_\mathbb{R}^+}(\mathbf{1},\mathrm{H}^2_{B,!}(S,V(2))) \hookrightarrow \mathrm{H}^3_H(S,V(2)),$

where $\mathrm{MHS}_{\mathbb{R}}^+$ is the abelian category of mixed $\mathbb{R}\text{-}\mathsf{Hodge}$ structures and 1 denotes trivial Hodge structure, i.e., the unit of $\mathrm{MHS}_{\mathbb{R}}^+$.

Remark

- The proof uses a lot of Hodge theoretical computations.
- The Hodge theoretical vanishing on the boundary result for Eisenstein classes is also obtained in [G. Kings 1998] for Hilbert modular surfaces and in [F. Lemma 2015] for Siegel 3-folds. Our method is similar to theirs.

The motivic result

Theorem (S. 2024)

For suitable non-trivial alg. representations V of G, the motivic map ${\cal E}$ is $^n_m:{\cal B}_n\to{\rm H}^3_M({\cal S},V(2))$ factors through the inclusion

$$
\mathrm{H}^{3+a-b+3(r-s)}_M(\mathrm{Gr}_0\mathrm{M}_\mathrm{gm}(S,V),\mathbb{Q}(2+a+2r-s))\hookrightarrow \mathrm{H}^3_M(S,V(2)).
$$

Remark

- $\mathrm{H}^{3+a-b+3(r-s)}_{{\cal M}}(\mathrm{Gr}_0\mathrm{M}_{\mathrm{gm}}(S,V),\mathbb{Q}(2+a+2r-s))$ is the motivic incarnation for $\mathrm{Ext}^1_{\mathrm{MHS}_\mathbb{R}^+}(\mathbf{1},\mathrm{H}_{B,!}^2(S,V(2))),$ where a, b, r, s are the integer parameters defining V .
- G. Kings asked in 1998 whether we can prove the vanishing on the boundary for Eisenstein classes in the motivic world.
- My result is the first about vanishing on the boundary for Eisenstein classes in the motivic world.

 Ω

[Introduction](#page-2-0) **[The Main Result](#page-24-0)** [Key definitions](#page-17-0) **The Main Result**

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Thank you!