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Euler's calculations

In the 1700s, Euler made the
following famous computations:

o
1+1+1+1+ _
3 6

o
1+1+1+1+ il
3 ~ o0

Notice similar exponents.
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Euler's calculations

Definition

Bernoulli numbers By € Q are given by the expansion
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Riemann (-function

In 1859, Riemann introduced the (-function of
a complex variable: if s € C,
o ((s):= > L for Re(s) > 1.
n>1
o (Euler product):
¢(s) =[] 2 for Re(s) > 1.

_T
p 1w

@ It has meromorphic continuation to C.

@ It has a (simple) pole only at s = 1.
o (Functional egn): A(s) =A(1 —s)
for A(s) := 73T ($)((s).
Call w*%r(g) a [-factor.
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Dedekind (-function

Dedekind (1879) generalized ((s) to an
arbitrary number field F.

o (r(s):=> 7 ﬁ for Re(s) > 1,
where Z runs over the non-zero ideals of
Or, so (o(s) = ¢(s).

o (Euler product):

Cr(s) =TI, #1/—‘ for Re(s) > 1,
Of/pl®
where @ runs over the non-zero prime

ideals of OF.

@ (r(s) has meromorphic continuation to C.

@ (£(s) has a (simple) pole only at s = 1.
o (Functional eqn): Ag(s) = Ag(1 —s)
for /§F(s)s::
|d[2 (721 (5))™((2m) T (s)) " Cr(s)-
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Class number formula

The residue of (£(s) at s = 1 is related to global arithmetic
invariants of F by the class number formula:

ese_yCp(s) = 2 2T)™ _ . (2m)"
Ress=1CF(s) |dF|%w(F)h(F)R(F) g* (2m)2R(F).

dr: discriminant of F

w(F): the number of roots of unity in F
h(F): class number of F

R(F): covolume of Dirichlet regulator map

rpir - O;_—< — Rrﬁ-q’

dimIm(rD,-,) =n+nmrn-—1

eg. F=Q(V2), OF/{£1} = (1+V2),
roir(1+ V2) = (log(1 + v2)), — log(1 + v2)),
R(F) = log(1 + v/2)
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BSD conjecture

@ For an elliptic curve E over Q, we can define its L-function
L(E,s) and regulator R(E) similarly.

@ Birch and Swinnerton—-Dyer conjecture predicts that

LD(E, 1)

r!

=g« QE)R(E),

where
o r=ords—1L(E,s),
o LU)E!E’S) is lead. coeff. of L(E,s) at s = 1.
o Q(E): the period of E
eg E1y?=x>-2r=1 E(Q)/E(Q)wr = (P)=((3,5))
Q(E) =~ 2.16368, R(E) = h(P) ~ 1.34957
Q(E)R(E) =~ 2.92003, L'(E,1) ~ 2.92005,
L'(E,1) =Q(E)R(E)
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Beilinson’s conjectures

In the 1980s, Beilinson made a deep conjecture about special
values of motivic L-functions generalizing the classical analytic

class number formula.
Let X be a smooth projective variety over QQ, i > 0and n € Z
satisfying 2n > i. Replace ingredients of class number formula:

o OF ~ Hi*}(X,Q(n)) (Motivic cohomology)

o If 2n =i+ 1, then Hif(X,Q(n)) = CH"(X)q.
o If n=1,i =0, then H{ (X, Q(n)) = Hi,(X,Q(1)) = Q(X)*.
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Beilinson’s conjectures

In the 1980s, Beilinson made a deep conjecture about special
values of motivic L-functions generalizing the classical analytic

class number formula.
Let X be a smooth projective variety over QQ, i > 0and n € Z
satisfying 2n > i. Replace ingredients of class number formula:

o OF ~ Hi*}(X,Q(n)) (Motivic cohomology)

o If 2n =i+ 1, then Hif(X,Q(n)) = CH"(X)q.
o If n=1,i =0, then H{ (X, Q(n)) = Hi,(X,Q(1)) = Q(X)*.

o R1T2 Hﬁl(X,R(n)) (Absolute Hodge cohomology)

@ Ipjir ~ IH

ry : HIFL(X, Q(n)) — H 1 (X, R(n)) (Beilinson’s higher regulator)
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Beilinson’s conjectures

e M = hi(X)(n): a pure motive associated to X and n.
w =i — 2n: its weight, so 2n > i implies w < 0.
@ (r(s) ~ L(M,s) (Motivic L-function),
o For Re(s) > % + 1, L(M, s) is convergent Euler product.
o A meromorphic cont. and functional equation of L(M,s)
relating s and w 4+ 1 — s is conjectured, mainly still open.
o w<0=w<—1,500 > “tL: center of L(M,s).
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Beilinson’s conjectures

e M = hi(X)(n): a pure motive associated to X and n.
w =i — 2n: its weight, so 2n > i implies w < 0.
@ (r(s) ~ L(M,s) (Motivic L-function),
o For Re(s) > % + 1, L(M, s) is convergent Euler product.
o A meromorphic cont. and functional equation of L(M,s)
relating s and w 4+ 1 — s is conjectured, mainly still open.
ow<0=w<-1,s00> WTH: center of L(M,s).
@ Critical points vs. Non-critical points
Let M (M, s) be associated Gamma factor of L(M,s). Call
n € Z critical for L(M, s) if it is not a pole of I',(M,s) or
lo(M,w + 1 —s). Otherwise, n € Z is called non-critical.
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Beilinson’s conjectures

e M = hi(X)(n): a pure motive associated to X and n.
w =i — 2n: its weight, so 2n > i implies w < 0.
@ (r(s) ~ L(M,s) (Motivic L-function),
o For Re(s) > % + 1, L(M, s) is convergent Euler product.
o A meromorphic cont. and functional equation of L(M,s)
relating s and w + 1 — s is conjectured, mainly still open.
o w<0=w<—1,500 > “tL: center of L(M,s).
@ Critical points vs. Non-critical points
Let M (M, s) be associated Gamma factor of L(M,s). Call
n € Z critical for L(M, s) if it is not a pole of I',(M,s) or
lo(M,w + 1 —s). Otherwise, n € Z is called non-critical.
o For ((s), w =0, M'o(Q,s) = m/2T(s/2), critical points are
positive even integers and negative odd integers. Non-critical
points are positive odd integers and non-positive even integers.
o For L(E,s), w =1, [(E,s) =2(2r)"*I(s), critical point is
s = 1. Non-critical points are integers not equal to 1.
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Beilinson’s conjectures

o If s =0 is critical for M, Deligne conjectured that

L(M,0) € cT(M)Q™ |,

where ¢ (M) is Deligne period.
e.g. If M =Q(2m) for m € Z~g, then L(M,s) = ((s +2m)
and ¢t (M) = (27i)?>™: Euler's ¢(2m)-formula.

o If s = 0 is non-critical for M and 2n > j + 3, then
w=i—-2n<-3and 5 +1< —% <0, so L(M,0) makes
sense as an Euler product. Beilinson conjectured that

AP r(Hpy 1 (X, Q(n))) =g« L(M,0)D(M),

where D(M) is the Deligne rational structure.
eg. If M=Q(3), L(M,s) =((s+3), so L(M,0) = ¢(3),
ry = 2rg, where rg : K5(Z) — R is a Borel regulator.
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The setup

@ Let E be an imaginary quadratic field of discriminant —D, and
let x — X be the nontrivial Galois automorphism of E over Q.

@ Let O be the ring of integers of E.

e Fix an identification of E ®g R with C s.t. the imaginary part
of § :=+/—D is positive.

V.
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The group G = GU(2,1)

Let J € GL3(E) be the Hermitian matrix

0
J=1| 0 where § = VD,

)

o = O
O O

_1
5

and let G = GU(2,1) be the group scheme over Z such that for
Z-algebras R, we have for units u € R,

G(R) = {(g, 1) € GL3(O ®z R) x R*|'gJg = nJ}.

Let H be the group scheme over Z such that for Z-algebras R,

H(R) = {(g,z) € GLa(R) x (O ®z R)*|det(g) = zz}.
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Modular curves

Definition
Let H = {7 = x+iy|x € R,y € Ry} be the upper half plane. Let
I = SLy(Z), acting on H by

at + b
ct+d’

The modular curve Y(1) is defined as

Y(1) := N\

It is an affine algebraic curve over Q.
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modular surfaces

Picard modular surfaces are certain 2-dimensional Shimura
varieties over E that generalize modular curves over Q.

H ~~ complex 2-ball X in C? (|z1]2 + |z[*> < 1)
SLp(Z) ~» T = GU(2,1)(Z) (Picard modular group)
Picard modular surface of level I is defined as Shg(I') := M\ X

Picard modular surfaces are algebraic surfaces over E. (Note
E used to define J which appears in the definition of G.)

-2

Lo

Charles Emile Picard Goro Shimura
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representations

For an elliptic curve E/Q which is defined by the equation
y2 = x3 + ax + b, where a, b € Q, for a fixed prime p, its
Tate module T,(E) is defined as

Tp(E) = lim E[p"]
'3
where E[p"] is the p"-torsion points of E.
There is a natural action pg of Gal(Q/Q) on T,(E) called the
p-adic Galois representation associated to E.

For a cusp form f with weight 2 and level I'g(/N), can define
its Galois representation ps.

[C. Breuil-B. Conrad-F. Diamond-R. Taylor 1999] To each
E/Q, pe = pr for some f of weight 2.

Galois representations are étale realizations of motives.
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Automorphic motives

For a cusp form f, can construct its Grothendieck motive
M(f) by work of Scholl.

GLy ~ GU(2,1)

faom =7 ® Moo,

where 7 is some “cohomological” irreducible cuspidal
automorphic representation of GU(2,1).

m can be thought as some kind of Picard modular form.

M(f) ~ M(ms, V),

where the M(7¢, V) is a Grothendieck motive associated to .
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Outline

Beilinson's conjectures

When 2n > i + 3 and dimg HiF1(X,R(n)) = 1,

r(Hip (X, Q(n))) =g~ L(M,0)D(M) |

Let S :=Shg, G = GU(2,1) and M = Shy.

o Step one: Construct motivic classes ¢ in H3,(S, V(2)), where
S is the Picard modular surface and V' is some non-trivial nice
“motivic local system” on it;

@ Step two: Prove that the classes c lie in a “nice” subspace of
Hy/(S, V(2));

@ Step three: Compute image of ¢ under higher regulator ry
and relate to L(M(m¢, V(2)),0).
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The L-value result |

Theorem (S. 2024)

For suitable non-trivial algebraic representations V' of G, if we
choose some ‘“cohomological” irreducible cuspidal automorphic
representation T of G that appears in H% (S, V(2)), we get:

K(me, V(2)) = C- L(M(r, V(2)),0)D(mr, V(2))

where C € (E(nf) ®q C)*,
e M(w¢, V(2)) is a motive associated to .

o K(mr, V(2)): 1-dim E(m¢)-subspace of a certain rank one
E(m¢) ®g R-module generated by ry(c), c is the constructed
motivic class in H3,(S, V(2)).

e D(7¢, V(2)): another 1-dim E(7¢)-subspace of the same
E(m¢) ®g R-module, called the Deligne E(m)-structure.
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The L-value result Il

@ This result gives evidence towards Beilinson’s conjectures.

e Constant C should be in E(7f)* but we have not proven it.

o K(mr,V(2)) = C - L(M(r¢, V(2)),0)D(xs, V(2)), C #0,
L(M(7¢, V(2)),0) # 0 and D(7¢, V(2)) # {0}, so we proved
the motivic class ¢ that generates the left side is non-trivial,
which answers a question raised in [D. Loeffler-C. Skinner-S.
Zerbes 2022]. In their paper, they assume the class c is
non-trivial and use it to construct an Euler system for
GU(2,1) based on the nontriviality.
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The L-value result Il

@ This result gives evidence towards Beilinson’s conjectures.

e Constant C should be in E(7f)* but we have not proven it.

o K(mr,V(2)) = C - L(M(r¢, V(2)),0)D(xs, V(2)), C #0,
L(M(7¢, V(2)),0) # 0 and D(7¢, V(2)) # {0}, so we proved
the motivic class ¢ that generates the left side is non-trivial,
which answers a question raised in [D. Loeffler-C. Skinner-S.
Zerbes 2022]. In their paper, they assume the class c is
non-trivial and use it to construct an Euler system for
GU(2,1) based on the nontriviality.

@ If V is trivial, similar results were obtained in [A. Pollack-S.
Shah 2018].

@ Similar relations with non-trivial coefficients were obtained in
[G. Kings 1998] and [F. Lemma 2017].
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The construction of motivic classes
e Starting point: [Beilinson 83] The Eisenstein symbol:

Eis?
B, — H},(Shgr,, Sym” Va(1)),

where Shqr, is a modular curve. It can be seen as incarnation
of real analytic Eisenstein series in the motivic world.
@ Define the following two maps:

d

b b
p: H— GLy, ((i d>,z)H<i d>

@ The maps ¢t: H— G and p: H — GL; of algebraic groups
will induce the following morphisms of Shimura varieties:

p: M = Shy — Shgr,, ¢ : M =Shy = S = Shg.

2 b a 0 b
t:H—= G, ( ,z2)—~ (10 z 0],z2)
‘ c 0 d

and
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The construction of motivic classes

The construction I

Eisf! *

M
By, — > HY(Shar,, Sym"Va(1)) s HL, (M, W(1)) — > H3,(5, V(2))

o | Eisf(¢f) } p*Eisf(¢r) ———= c = 1.p*Eisf},(¢r)
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The construction of motivic classes

The construction |l

Eisl! *
M
By, — > HY(Shar,, Sym"Va(1)) s HL, (M, W(1)) — > H3,(5, V(2))
or | Eisgy(¢r) | p*Eisfy(¢r) ———== ¢ = txp" Bisp(¢r)

v
@ The construction is due to [D. Loeffler-C. Skinner-S. Zerbes

2022].

@ When V = Q, [A. Pollack-S. Shah 2018] gave an essentially
similar construction of motivic classes.

A
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The Hodge result

o Eisyy := 1, 0 p* o Eisy,
o Cisfy = ry(Eisgy)
o H3 (S, V(2) := Im(Hp (S, V(2)) — HE(S, V(2)))

\,

Theorem (S. 2024)

For suitable non-trivial algebraic representations V' of G, the map
Eisth : Bor — H3,(S, V(2)) factors through the inclusion

Extys: (1, Hp (S, V(2))) = HY(S, V(2)),

where MHSE‘J is the abelian category of mixed R-Hodge structures
and 1 denotes trivial Hodge structure, i.e., the unit of MHS%.

.
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Remarks on Theorem

Theorem (S. 2024)

For suitable non-trivial algebraic representations V' of G, the map
Eisfy: Bor — H3(S, V(2)) factors through the inclusion

Extl s (1,H3,(S, V(2))) = H(S, V(2)),

where MHS% is the abelian category of mixed R-Hodge structures
and 1 denotes trivial Hodge structure, i.e., the unit of MHS;{Q

@ The proof uses a lot of Hodge theoretical computations.

@ The Hodge theoretical vanishing on the boundary result for
Eisenstein classes is also obtained in [G. Kings 1998] for
Hilbert modular surfaces and in [F. Lemma 2015] for Siegel
3-folds. Our method is similar to theirs.

= = = = =
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The motivic result

Theorem (S. 2024)

For suitable non-trivial alg. representations VV of G, the motivic
map Eisy - B, — H3,(S, V(2)) factors through the inclusion

AP35 (GrgMgm (S, V), Q2+ a+2r —s)) < H,(S, V(2)).

v

C Hi/—l"_a_b+3(r_5)(Gr0Mgm(57 V)7 Q(2 +a+ 2r — 5)) is the

motivic incarnation for Extll\AHS&(l,H%J(S, V(2))), where

a, b, r, s are the integer parameters defining V.

@ G. Kings asked in 1998 whether we can prove the vanishing on
the boundary for Eisenstein classes in the motivic world.

@ My result is the first about vanishing on the boundary for
Eisenstein classes in the motivic world.

v




The Main Result
oe

Thank you!
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