▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

On higher regulators of Picard modular surfaces

Linli Shi

University of Connecticut

UC San Diego Number Theory Seminar November 20, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Table of Contents

- Introduction
 - Riemann ζ -function
 - Dedekind ζ -functions
 - BSD conjecture
 - Beilinson's conjectures
- 2 Key definitions
 - Algebraic groups
 - Shimura varieties
 - Automorphic motives
- 3 The Main Result
 - Connection to L-values
 - Hodge vanishing on the boundary
 - Motivic vanishing on the boundary

(日) (四) (日) (日) (日)

Table of Contents

- Introduction
 - Riemann ζ -function
 - Dedekind ζ -functions
 - BSD conjecture
 - Beilinson's conjectures
- 2 Key definitions
 - Algebraic groups
 - Shimura varieties
 - Automorphic motives
- 3 The Main Result
 - Connection to L-values
 - Hodge vanishing on the boundary
 - Motivic vanishing on the boundary

The Main Result

Euler's calculations

In the 1700s, Euler made the following famous computations:

Notice similar exponents.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Euler's calculations

Definition

Bernoulli numbers $B_k \in \mathbb{Q}$ are given by the expansion

$$\frac{t}{e^t - 1} = \sum_{k \ge 0} B_k \frac{t^k}{k!} = 1 - \frac{1}{2}t + \frac{1}{6} \cdot \frac{t^2}{2} - \frac{1}{30} \cdot \frac{t^4}{4!} + \cdots$$

Euler showed the following formula:

$$1 + \frac{1}{2^{2m}} + \frac{1}{3^{2m}} + \frac{1}{4^{2m}} + \dots = \frac{(2\pi)^{2m}|B_{2m}|}{2(2m)!}, \quad \text{for } m \in \mathbb{Z}^+.$$

Examples

•
$$(m = 1)$$
 $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{(2\pi)^2}{2 \cdot 2} \cdot \frac{1}{6} = \frac{\pi^2}{6}$
• $(m = 2)$ $1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots = \frac{(2\pi)^4}{2 \cdot 4!} \cdot \frac{1}{30} = \frac{\pi^4}{90}$

٩٩

The Main Result

Riemann ζ -function

In 1859, Riemann introduced the ζ -function of a complex variable: if $s \in \mathbb{C}$,

- $\zeta(s) := \sum_{n \ge 1} \frac{1}{n^s}$ for $\operatorname{Re}(s) > 1$.
- (Euler product): $\zeta(s) = \prod_{p} \frac{1}{1-\frac{1}{p^s}} \text{ for } \operatorname{Re}(s) > 1.$
- $\bullet\,$ It has meromorphic continuation to $\mathbb{C}.$
- It has a (simple) pole only at s = 1.

• (Functional eqn):
$$\Lambda(s) = \Lambda(1-s)$$

for $\Lambda(s) := \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \zeta(s)$.
Call $\pi^{-\frac{s}{2}} \Gamma(\frac{s}{2})$ a Γ -factor.

Dedekind ζ -function

Dedekind (1879) generalized $\zeta(s)$ to an arbitrary number field *F*.

• $\zeta_F(s) := \sum_{\mathcal{I}} \frac{1}{|\mathcal{O}_F/\mathcal{I}|^s}$, for $\operatorname{Re}(s) > 1$, where \mathcal{I} runs over the non-zero ideals of \mathcal{O}_F , so $\zeta_{\mathbb{Q}}(s) = \zeta(s)$.

• (Euler product):

$$\zeta_F(s) = \prod_{\wp} \frac{1}{1 - \frac{1}{|\mathcal{O}_F/\wp|^s}}$$
 for $\operatorname{Re}(s) > 1$,
where \wp runs over the non-zero prime
ideals of \mathcal{O}_F .

- $\zeta_F(s)$ has meromorphic continuation to \mathbb{C} .
- $\zeta_F(s)$ has a (simple) pole only at s = 1.
- (Functional eqn): $\Lambda_F(s) = \Lambda_F(1-s)$ for $\Lambda_F(s) := |d_F|^{\frac{s}{2}} (\pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}))^{r_1} ((2\pi)^{-s} \Gamma(s))^{r_2} \zeta_F(s).$

Class number formula

The residue of $\zeta_F(s)$ at s = 1 is related to global arithmetic invariants of F by the class number formula:

$$\operatorname{Res}_{s=1}\zeta_F(s) = \frac{2^{r_1}(2\pi)^{r_2}}{|d_F|^{\frac{1}{2}}\omega(F)}h(F)R(F) =_{\overline{\mathbb{Q}}^{\times}} (2\pi)^{r_2}R(F).$$

- d_F: discriminant of F
- $\omega(F)$: the number of roots of unity in F
- h(F): class number of F
- R(F): covolume of Dirichlet regulator map

$$r_{Dir}: O_F^{\times} o \mathbb{R}^{r_1+r_2},$$

 $\dim \operatorname{Im}(r_{Dir}) = r_1 + r_2 - 1.$ e.g. $F = \mathbb{Q}(\sqrt{2}), \ O_F^{\times} / \{\pm 1\} = (1 + \sqrt{2})^{\mathbb{Z}},$ $r_{Dir}(1 + \sqrt{2}) = (\log(1 + \sqrt{2})), -\log(1 + \sqrt{2})),$ $R(F) = \log(1 + \sqrt{2})$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

BSD conjecture

- For an elliptic curve E over \mathbb{Q} , we can define its *L*-function L(E, s) and regulator R(E) similarly.
- Birch and Swinnerton-Dyer conjecture predicts that

$$\frac{L^{(r)}(E,1)}{r!} =_{\mathbb{Q}^{\times}} \Omega(E)R(E),$$

where

•
$$r = \operatorname{ord}_{s=1}L(E, s)$$
,
so $\frac{L^{(r)}(E, s)}{r!}$ is lead. coeff. of $L(E, s)$ at $s = 1$.
• $\Omega(E)$: the period of E
e.g. $E : y^2 = x^3 - 2$, $r = 1$, $E(\mathbb{Q})/E(\mathbb{Q})_{tor} = \langle P \rangle = \langle (3, 5) \rangle$
 $\Omega(E) \approx 2.16368, R(E) = \widehat{h}(P) \approx 1.34957$
 $\Omega(E)R(E) \approx 2.92003, L'(E, 1) \approx 2.92005,$
 $L'(E, 1) = \Omega(E)R(E)$

A D N A 目 N A E N A E N A B N A C N

Beilinson's conjectures

In the 1980s, Beilinson made a deep conjecture about special values of motivic *L*-functions generalizing the classical analytic class number formula.

Let X be a smooth projective variety over \mathbb{Q} , $i \ge 0$ and $n \in \mathbb{Z}$ satisfying 2n > i. Replace ingredients of class number formula:

- $O_F^{\times} \rightsquigarrow \operatorname{H}^{i+1}_M(X, \mathbb{Q}(n))$ (Motivic cohomology)
 - If 2n = i + 1, then $\operatorname{H}^{i+1}_{M_{\cdot}}(X, \mathbb{Q}(n)) \cong \operatorname{CH}^{n}(X)_{\mathbb{Q}}$.
 - If n = 1, i = 0, then $\operatorname{H}^{i+1}_{M}(X, \mathbb{Q}(n)) = \operatorname{H}^{1}_{M}(X, \mathbb{Q}(1)) \cong \mathbb{Q}(X)^{\times}$.

A D N A 目 N A E N A E N A B N A C N

Beilinson's conjectures

In the 1980s, Beilinson made a deep conjecture about special values of motivic *L*-functions generalizing the classical analytic class number formula.

Let X be a smooth projective variety over \mathbb{Q} , $i \ge 0$ and $n \in \mathbb{Z}$ satisfying 2n > i. Replace ingredients of class number formula:

- $O_F^{\times} \rightsquigarrow \operatorname{H}^{i+1}_M(X, \mathbb{Q}(n))$ (Motivic cohomology)
 - If 2n = i + 1, then $\operatorname{H}^{i+1}_{M}(X, \mathbb{Q}(n)) \cong \operatorname{CH}^{n}(X)_{\mathbb{Q}}$.
 - If n = 1, i = 0, then $\operatorname{H}^{i+1}_{M}(X, \mathbb{Q}(n)) = \operatorname{H}^{1}_{M}(X, \mathbb{Q}(1)) \cong \mathbb{Q}(X)^{\times}$.

• $\mathbb{R}^{r_1+r_2} \rightsquigarrow \mathrm{H}^{i+1}_{H}(X,\mathbb{R}(n))$ (Absolute Hodge cohomology)

Beilinson's conjectures

In the 1980s, Beilinson made a deep conjecture about special values of motivic *L*-functions generalizing the classical analytic class number formula.

Let X be a smooth projective variety over \mathbb{Q} , $i \ge 0$ and $n \in \mathbb{Z}$ satisfying 2n > i. Replace ingredients of class number formula:

- $O_F^{\times} \rightsquigarrow \operatorname{H}^{i+1}_M(X, \mathbb{Q}(n))$ (Motivic cohomology)
 - If 2n = i + 1, then $\operatorname{H}^{i+1}_{M}(X, \mathbb{Q}(n)) \cong \operatorname{CH}^{n}(X)_{\mathbb{Q}}$.
 - If n = 1, i = 0, then $\overline{\mathrm{H}}_{M}^{i+1}(X, \mathbb{Q}(n)) = \mathrm{H}_{M}^{1}(X, \mathbb{Q}(1)) \cong \mathbb{Q}(X)^{\times}$.
- $\mathbb{R}^{r_1+r_2} \rightsquigarrow \mathrm{H}^{i+1}_{H}(X,\mathbb{R}(n))$ (Absolute Hodge cohomology)

• $r_{Dir} \rightsquigarrow r_H$

 $r_H : \mathrm{H}^{i+1}_M(X, \mathbb{Q}(n)) \to \mathrm{H}^{i+1}_H(X, \mathbb{R}(n))$ (Beilinson's higher regulator)

Introduction

Key definitions

- $M = h^i(X)(n)$: a pure motive associated to X and n.
 - w = i 2n: its weight, so 2n > i implies w < 0.
- $\zeta_F(s) \rightsquigarrow L(M, s)$ (Motivic L-function),
 - For $\operatorname{Re}(s) > \frac{w}{2} + 1$, L(M, s) is convergent Euler product.
 - A meromorphic cont. and functional equation of L(M, s) relating s and w + 1 s is conjectured, mainly still open.
 - $w < 0 \Rightarrow w \le -1$, so $0 \ge \frac{w+1}{2}$: center of L(M, s).

Introduction

- $M = h^i(X)(n)$: a pure motive associated to X and n.
 - w = i 2n: its weight, so 2n > i implies w < 0.
- $\zeta_F(s) \rightsquigarrow L(M, s)$ (Motivic L-function),
 - For $\operatorname{Re}(s) > \frac{w}{2} + 1$, L(M, s) is convergent Euler product.
 - A meromorphic cont. and functional equation of L(M, s) relating s and w + 1 s is conjectured, mainly still open.
 - $w < 0 \Rightarrow w \le -1$, so $0 \ge \frac{w+1}{2}$: center of L(M, s).
- Critical points vs. Non-critical points
 Let Γ_∞(M, s) be associated Gamma factor of L(M, s). Call
 n ∈ ℤ critical for L(M, s) if it is not a pole of Γ_∞(M, s) or
 Γ_∞(M, w + 1 − s). Otherwise, n ∈ ℤ is called non-critical.

- $M = h^i(X)(n)$: a pure motive associated to X and n.
 - w = i 2n: its weight, so 2n > i implies w < 0.
- $\zeta_F(s) \rightsquigarrow L(M, s)$ (Motivic *L*-function),
 - For $\operatorname{Re}(s) > \frac{w}{2} + 1$, L(M, s) is convergent Euler product.
 - A meromorphic cont. and functional equation of L(M, s) relating s and w + 1 s is conjectured, mainly still open.
 - $w < 0 \Rightarrow w \le -1$, so $0 \ge \frac{w+1}{2}$: center of L(M, s).
- - For ζ(s), w = 0, Γ_∞(Q, s) = π^{-s/2}Γ(s/2), critical points are positive even integers and negative odd integers. Non-critical points are positive odd integers and non-positive even integers.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

- $M = h^i(X)(n)$: a pure motive associated to X and n.
 - w = i 2n: its weight, so 2n > i implies w < 0.
- $\zeta_F(s) \rightsquigarrow L(M, s)$ (Motivic *L*-function),
 - For $\operatorname{Re}(s) > \frac{w}{2} + 1$, L(M, s) is convergent Euler product.
 - A meromorphic cont. and functional equation of L(M, s) relating s and w + 1 s is conjectured, mainly still open.
 - $w < 0 \Rightarrow w \le -1$, so $0 \ge \frac{w+1}{2}$: center of L(M, s).
- - For ζ(s), w = 0, Γ_∞(Q, s) = π^{-s/2}Γ(s/2), critical points are positive even integers and negative odd integers. Non-critical points are positive odd integers and non-positive even integers.
 - For L(E, s), w = 1, $\Gamma_{\infty}(E, s) = 2(2\pi)^{-s}\Gamma(s)$, critical point is s = 1. Non-critical points are integers not equal to 1.

Beilinson's conjectures

• If s = 0 is *critical* for *M*, Deligne conjectured that

$$L(M,0)\in c^+(M)\mathbb{Q}^{ imes}$$
 ,

where $c^+(M)$ is Deligne period. e.g. If $M = \mathbb{Q}(2m)$ for $m \in \mathbb{Z}_{>0}$, then $L(M, s) = \zeta(s + 2m)$ and $c^+(M) = (2\pi i)^{2m}$: Euler's $\zeta(2m)$ -formula.

• If s = 0 is *non-critical* for M and $2n \ge i + 3$, then $w = i - 2n \le -3$ and $\frac{w}{2} + 1 \le -\frac{1}{2} < 0$, so L(M, 0) makes sense as an Euler product. Beilinson conjectured that

$$\wedge^{\operatorname{top}} r_{H}(H^{i+1}_{M}(X,\mathbb{Q}(n))) =_{\mathbb{Q}^{\times}} L(M,0)\mathcal{D}(M),$$

where $\mathcal{D}(M)$ is the Deligne rational structure.

e.g. If $M = \mathbb{Q}(3)$, $L(M, s) = \zeta(s+3)$, so $L(M, 0) = \zeta(3)$, $r_H = 2r_B$, where $r_B : K_5(\mathbb{Z}) \to \mathbb{R}$ is a Borel regulator.

(日) (四) (日) (日) (日)

Table of Contents

1 Introduction

- Riemann ζ -function
- Dedekind ζ-functions
- BSD conjecture
- Beilinson's conjectures
- 2 Key definitions
 - Algebraic groups
 - Shimura varieties
 - Automorphic motives

3 The Main Result

- Connection to L-values
- Hodge vanishing on the boundary
- Motivic vanishing on the boundary

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The setup

Notations

- Let *E* be an imaginary quadratic field of discriminant −*D*, and let *x* → *x̄* be the nontrivial Galois automorphism of *E* over Q.
- Let \mathcal{O} be the ring of integers of E.
- Fix an identification of $E \otimes_{\mathbb{Q}} \mathbb{R}$ with \mathbb{C} s.t. the imaginary part of $\delta := \sqrt{-D}$ is positive.

Introduction 0000000000

The group G = GU(2, 1)

Definition

Let $J \in GL_3(E)$ be the Hermitian matrix

$$J = egin{pmatrix} 0 & 0 & rac{1}{\delta} \ 0 & 1 & 0 \ -rac{1}{\delta} & 0 & 0 \end{pmatrix}, \quad ext{where } \delta = \sqrt{-D},$$

and let G = GU(2, 1) be the group scheme over \mathbb{Z} such that for \mathbb{Z} -algebras R, we have for units $\mu \in R^{\times}$,

$$G(R) = \{(g, \mu) \in \operatorname{GL}_3(\mathcal{O} \otimes_{\mathbb{Z}} R) \times R^{\times} | {}^t \bar{g} Jg = \mu J \}.$$

Let *H* be the group scheme over \mathbb{Z} such that for \mathbb{Z} -algebras *R*,

$$H(R) = \{(g, z) \in \operatorname{GL}_2(R) \times (\mathcal{O} \otimes_{\mathbb{Z}} R)^{\times} | \det(g) = z\overline{z}\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Modular curves

Definition

Let $\mathcal{H} = \{\tau = x + iy | x \in \mathbb{R}, y \in \mathbb{R}_{>0}\}$ be the upper half plane. Let $\Gamma = SL_2(\mathbb{Z})$, acting on \mathcal{H} by

$$au\mapsto rac{a au+b}{c au+d}$$

The modular curve Y(1) is defined as

$$Y(1) := \Gamma ackslash \mathcal{H}.$$

It is an affine algebraic curve over \mathbb{Q} .

Introduction 0000000000

Picard modular surfaces

- Picard modular surfaces are certain 2-dimensional Shimura varieties over *E* that generalize modular curves over \mathbb{Q} .
- $\mathcal{H} \rightsquigarrow$ complex 2-ball X in \mathbb{C}^2 $(|z_1|^2 + |z_2|^2 < 1)$
- $\operatorname{SL}_2(\mathbb{Z}) \rightsquigarrow \Gamma = \operatorname{GU}(2,1)(\mathbb{Z})$ (Picard modular group)
- Picard modular surface of level Γ is defined as $\operatorname{Sh}_{G}(\Gamma) := \Gamma \setminus X$
- Picard modular surfaces are algebraic surfaces over *E*. (Note *E* used to define *J* which appears in the definition of *G*.)

Charles Émile Picard

Goro Shimura

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Galois representations

• For an elliptic curve E/\mathbb{Q} which is defined by the equation $y^2 = x^3 + ax + b$, where $a, b \in \mathbb{Q}$, for a fixed prime p, its Tate module $T_p(E)$ is defined as

$$T_p(E) = \varprojlim_n E[p^n]$$

where $E[p^n]$ is the p^n -torsion points of E.

- There is a natural action ρ_E of Gal(Q/Q) on T_p(E) called the p-adic Galois representation associated to E.
- For a cusp form f with weight 2 and level $\Gamma_0(N)$, can define its Galois representation ρ_f .
- [C. Breuil-B. Conrad-F. Diamond-R. Taylor 1999] To each E/\mathbb{Q} , $\rho_E \cong \rho_f$ for some f of weight 2.
- Galois representations are étale realizations of motives.

Automorphic motives

- For a cusp form *f*, can construct its Grothendieck motive M(f) by work of Scholl.
- $GL_2 \rightsquigarrow GU(2,1)$

٩

٠

$$f \rightsquigarrow \pi = \pi_f \otimes \pi_\infty,$$

where π is some "cohomological" irreducible cuspidal automorphic representation of GU(2, 1).

• π can be thought as some kind of Picard modular form.

$$M(f) \rightsquigarrow M(\pi_f, V),$$

where the $M(\pi_f, V)$ is a Grothendieck motive associated to π .

(日) (四) (日) (日) (日)

Table of Contents

1 Introduction

- Riemann ζ -function
- Dedekind ζ-functions
- BSD conjecture
- Beilinson's conjectures
- 2 Key definitions
 - Algebraic groups
 - Shimura varieties
 - Automorphic motives

3 The Main Result

- Connection to L-values
- Hodge vanishing on the boundary
- Motivic vanishing on the boundary

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline

Beilinson's conjectures

When
$$2n \ge i + 3$$
 and $\dim_{\mathbb{R}} H^{i+1}_{H}(X, \mathbb{R}(n)) = 1$,

$$r_H(H^{i+1}_M(X,\mathbb{Q}(n))) =_{\mathbb{Q}^{\times}} L(M,0)\mathcal{D}(M)$$

Let $S := \operatorname{Sh}_{\mathcal{G}}$, $\mathcal{G} = \operatorname{GU}(2,1)$ and $M = \operatorname{Sh}_{\mathcal{H}}$.

- Step one: Construct motivic classes c in $H^3_M(S, V(2))$, where S is the Picard modular surface and V is some non-trivial nice "motivic local system" on it;
- **Step two**: Prove that the classes *c* lie in a "nice" subspace of $H^3_M(S, V(2))$;
- Step three: Compute image of c under higher regulator r_H and relate to $L(M(\pi_f, V(2)), 0)$.

The L-value result I

Theorem (S. 2024)

For suitable non-trivial algebraic representations V of G, if we choose some "cohomological" irreducible cuspidal automorphic representation π of G that appears in $H^2_{B,!}(S, V(2))$, we get:

$$\mathcal{K}(\pi_f, V(2)) = C \cdot L(M(\pi_f, V(2)), \mathbf{0}) \mathcal{D}(\pi_f, V(2))$$

where $C \in (E(\pi_f) \otimes_{\mathbb{Q}} \mathbb{C})^{\times}$,

- $M(\pi_f, V(2))$ is a motive associated to π .
- K(π_f, V(2)): 1-dim E(π_f)-subspace of a certain rank one E(π_f) ⊗_Q ℝ-module generated by r_H(c), c is the constructed motivic class in H³_M(S, V(2)).
- D(π_f, V(2)): another 1-dim E(π_f)-subspace of the same E(π_f) ⊗_Q ℝ-module, called the Deligne E(π_f)-structure.

The L-value result II

Remark

- This result gives evidence towards Beilinson's conjectures.
- Constant C should be in $E(\pi_f)^{\times}$ but we have not proven it.
- K(π_f, V(2)) = C · L(M(π_f, V(2)), 0)D(π_f, V(2)), C ≠ 0, L(M(π_f, V(2)), 0) ≠ 0 and D(π_f, V(2)) ≠ {0}, so we proved the motivic class c that generates the left side is non-trivial, which answers a question raised in [D. Loeffler-C. Skinner-S. Zerbes 2022]. In their paper, they assume the class c is non-trivial and use it to construct an Euler system for GU(2, 1) based on the nontriviality.

The L-value result II

Remark

- This result gives evidence towards Beilinson's conjectures.
- Constant C should be in $E(\pi_f)^{\times}$ but we have not proven it.
- K(π_f, V(2)) = C · L(M(π_f, V(2)), 0)D(π_f, V(2)), C ≠ 0, L(M(π_f, V(2)), 0) ≠ 0 and D(π_f, V(2)) ≠ {0}, so we proved the motivic class c that generates the left side is non-trivial, which answers a question raised in [D. Loeffler-C. Skinner-S. Zerbes 2022]. In their paper, they assume the class c is non-trivial and use it to construct an Euler system for GU(2, 1) based on the nontriviality.
- If V is trivial, similar results were obtained in [A. Pollack-S. Shah 2018].
- Similar relations with non-trivial coefficients were obtained in [G. Kings 1998] and [F. Lemma 2017].

The construction of motivic classes

• Starting point: [Beilinson 83] The Eisenstein symbol:

$$B_n \xrightarrow{Eis_M^n} \mathrm{H}^1_M(\mathrm{Sh}_{\mathrm{GL}_2}, \mathrm{Sym}^n V_2(1)),$$

where ${\rm Sh}_{\rm GL_2}$ is a modular curve. It can be seen as incarnation of real analytic Eisenstein series in the motivic world.

• Define the following two maps:

$$\iota: H \hookrightarrow G, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix}, z) \mapsto \begin{pmatrix} a & 0 & b \\ 0 & z & 0 \\ c & 0 & d \end{pmatrix}, z\overline{z})$$

and

$$p: H \twoheadrightarrow \operatorname{GL}_2, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix}, z) \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

 The maps *ι* : *H* → *G* and *p* : *H* → GL₂ of algebraic groups will induce the following morphisms of Shimura varieties:

$$p: M = \operatorname{Sh}_H \to \operatorname{Sh}_{\operatorname{GL}_2}, \ \iota: M = \operatorname{Sh}_H \to S = \operatorname{Sh}_G.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The construction of motivic classes

The construction II

$$\mathcal{B}_n \xrightarrow{Eis^n_M} \operatorname{H}^1_M(\operatorname{Sh}_{\operatorname{GL}_2}, \operatorname{Sym}^n V_2(1)) \xrightarrow{p^*} \operatorname{H}^1_M(M, W(1)) \xrightarrow{\iota_*} \operatorname{H}^3_M(S, V(2))$$

$$\phi_f \longmapsto p^* \operatorname{Eis}^n_{\mathcal{M}}(\phi_f) \longmapsto p^* \operatorname{Eis}^n_{\mathcal{M}}(\phi_f) \longmapsto c = \iota_* p^* \operatorname{Eis}^n_{\mathcal{M}}(\phi_f)$$

The construction of motivic classes

The construction II

$$\mathcal{B}_n \xrightarrow{Eis_M^n} \operatorname{H}^1_M(\operatorname{Sh}_{\operatorname{GL}_2}, \operatorname{Sym}^n V_2(1)) \xrightarrow{\rho^*} \operatorname{H}^1_M(M, W(1)) \xrightarrow{\iota_*} \operatorname{H}^3_M(S, V(2))$$

$$\phi_f \longmapsto \mathsf{Eis}^n_M(\phi_f) \longmapsto p^* \mathsf{Eis}^n_M(\phi_f) \longmapsto c = \iota_* p^* \mathsf{Eis}^n_M(\phi_f)$$

Remark

- The construction is due to [D. Loeffler-C. Skinner-S. Zerbes 2022].
- When V = Q, [A. Pollack-S. Shah 2018] gave an essentially similar construction of motivic classes.

The Hodge result

Notations

- $\mathcal{E}is_{M}^{n} := \iota_{*} \circ p^{*} \circ Eis_{M}^{n}$
- $\mathcal{E}is_{H}^{n} := r_{H}(\mathcal{E}is_{M}^{n})$
- $\mathrm{H}^{2}_{B,!}(S, V(2)) := \mathrm{Im}(\mathrm{H}^{2}_{B,c}(S, V(2)) \to \mathrm{H}^{2}_{B}(S, V(2)))$

Theorem (S. 2024)

For suitable non-trivial algebraic representations V of G, the map $\mathcal{E}is^n_H: \mathcal{B}_{n,\mathbb{R}} \to \mathrm{H}^3_H(S, V(2))$ factors through the inclusion

$$\operatorname{Ext}^1_{\operatorname{MHS}^+_{\operatorname{\mathbb{D}}}}(\mathbf{1},\operatorname{H}^2_{\mathcal{B},!}(\mathcal{S},\mathcal{V}(2))) \hookrightarrow \operatorname{H}^3_{\mathcal{H}}(\mathcal{S},\mathcal{V}(2)),$$

where $MHS^+_{\mathbb{R}}$ is the abelian category of mixed \mathbb{R} -Hodge structures and $\mathbf{1}$ denotes trivial Hodge structure, i.e., the unit of $MHS^+_{\mathbb{R}}$.

Remarks on Theorem

Theorem (S. 2024)

For suitable non-trivial algebraic representations V of G, the map $\mathcal{E}is_{H}^{n}: \mathcal{B}_{n,\mathbb{R}} \to \mathrm{H}^{3}_{H}(S, V(2))$ factors through the inclusion

 $\mathsf{Ext}^1_{\mathrm{MHS}^+_{\mathbb{R}}}(\mathbf{1},\mathrm{H}^2_{\mathcal{B},!}(\mathcal{S},\mathcal{V}(2))) \hookrightarrow \mathrm{H}^3_{\mathcal{H}}(\mathcal{S},\mathcal{V}(2)),$

where $MHS^+_{\mathbb{R}}$ is the abelian category of mixed \mathbb{R} -Hodge structures and $\mathbf{1}$ denotes trivial Hodge structure, i.e., the unit of $MHS^+_{\mathbb{R}}$.

Remark

- The proof uses a lot of Hodge theoretical computations.
- The Hodge theoretical vanishing on the boundary result for Eisenstein classes is also obtained in [G. Kings 1998] for Hilbert modular surfaces and in [F. Lemma 2015] for Siegel 3-folds. Our method is similar to theirs.

The motivic result

Theorem (S. 2024)

For suitable non-trivial alg. representations V of G, the motivic map $\mathcal{E}is_{\mathcal{M}}^{n}: \mathcal{B}_{n} \to \mathrm{H}^{3}_{\mathcal{M}}(S, V(2))$ factors through the inclusion

$$\mathrm{H}^{3+a-b+3(r-s)}_{M}(\mathrm{Gr}_{0}\mathrm{M}_{\mathrm{gm}}(S,V),\mathbb{Q}(2+a+2r-s)) \hookrightarrow \mathrm{H}^{3}_{M}(S,V(2)).$$

Remark

- H^{3+a-b+3(r-s)}_M(Gr₀M_{gm}(S, V), Q(2 + a + 2r s)) is the motivic incarnation for Ext¹_{MHS⁺_R}(1, H²_{B,!}(S, V(2))), where a, b, r, s are the integer parameters defining V.
- G. Kings asked in 1998 whether we can prove the vanishing on the boundary for Eisenstein classes in the motivic world.
- My result is the first about vanishing on the boundary for Eisenstein classes in the motivic world.

▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● 今 Q (~

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thank you!