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Introduction Toric periods

Modular curve

Definition

Let H = {z = x + iy ∈ C|y > 0} be the upper half plane.

Let Γ be the group SL2(Z), each γ =

(
a b
c d

)
∈ Γ acts on H

by linear fractional transformations:

z 7→ az + b

cz + d
.

The quotient Γ\H is a smooth manifold with real dimension 2
and it has a natural Γ-invariant measure dµ = dx dy/y2.

Γ\H is not compact, but µ(Γ\H) = π
3 < ∞.
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Picture of the modular curve
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Definition of modular forms

Definition

A modular form of weight k ∈ Z≥0 is a holomorphic function
f : H → C such that:

(Automorphy condition): for each γ =

(
a b
c d

)
∈ Γ, we have

f (γ(z)) = (cz + d)k f (z), for all z = x + iy ∈ H.

(Growth condition): f (z) is bounded when y → ∞.

Remark

( 1 1
0 1 ) ∈ Γ = SL2(Z) ⇒ f (z + 1) = f (z) ⇒ f (z) =

∑
n≥0

anq
n,

where q = e2πiz and call an ∈ C the Fourier coefficients of f .

A modular form where a0 = 0 is called a cusp form.
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Fourier coefficients of modular forms

Remark

Here, ane
−2πny can be written as an integral:

f (q) =
∑
n≥0

anq
n ⇒

∫ 1

0
f (x + iy)e−2πinxdx = ane

−2πny .

Hence, f is a cusp form if, taking n = 0,∫
Z\R

f (x + iy)dx =

∫ 1

0
f (x + iy)dx = a0 = 0.

Later, we will generalize this definition of cusp forms to
automorphic forms.
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Examples of modular forms

Examples (Holomorphic Eisenstein series)

For even k ≥ 4, the Eisenstein series Ek(z) is defined as the
absolutely convergent sum

Ek(z) =
1

2
·
∑
c,d∈Z
(c,d)=1

1

(cz + d)k
.

It is a modular form of weight k and it has a Fourier expansion

Ek(z) = 1− 2k

Bk

∑
n≥1

σk−1(n)q
n,

where Bk ∈ Q and σk−1(n) =
∑
d |n

dk−1 ∈ Z. Since a0 = 1, Ek(z) is

not a cusp form. But E 3
4 (z)− E 2

6 (z) = 1728q + · · · is a cusp form.
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Non-holomorphic Eisenstein series

Generalization(non-holomorphic Eisenstein series)

We can generalize Eisenstein series to the non-holomorphic
setting, which can be seen as a “generalized modular form”.

For z = x + iy ∈ H and s ∈ C, the non-holomorphic
Eisenstein series E (z , s) is defined for Re(s) > 1 as :

E (z , s) =
∑

γ∈Γ∞\Γ

Im(γ(z))s = y s
∑
c,d∈Z
(c,d)=1

1

|cz + d |2s
,

where Γ∞ =

{
±
(
1 b
0 1

)∣∣∣∣b ∈ Z
}

is the stabilizer of i∞ in Γ.

E (z , s) is Γ-invariant: E (γ(z), s) = E (z , s).The series is
absolutely convergent for Re(s) > 1 and E (z , s) has a
meromorphic continuation in s to C (z is fixed).
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A formal computation

A period integral is an integral of a function on a manifold
over a closed submanifold. It has many applications in
number theory.

Ex: The integral

∫ ∞

0
(
∞∑
n=1

e−n2πx)x
s
2
−1dx = π− s

2Γ(
s

2
)ζ(s)

gives an integral representation of the Riemann ζ-function.
Formally (without considering convergence), we have the
following unfolding computation (recall dµ = dx dy

y2 ):∫
Γ\H

E (z , s)dµ =

∫
Γ\H

∑
γ∈Γ∞\Γ

Im(γ(z))sdµ =

∫
Γ∞\H

Im(z)sdµ

=

∫ ∞

0
y s

(∫
Z\R

dx

)
dy

y2

=

∫ ∞

0
y s−2dy . (Re(s) > 1)
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Divergence issue

Caution!

We saw
∫
Γ\H E (z , s)dµ =

∫∞
0 y s−2dy . (Re(s) > 1).

When Re(s) > 2, |y s−2| → ∞ when y → ∞.

It is due to E (z , s) is NOT rapidly decaying when y → ∞.

If f (z) is a cusp form, f (x + iy) rapidly decays as y → ∞
The integral ∫ ∞

0
y s−2dy (Re(s) > 1)

diverges, so the above unfolding calculation is NOT rigorous.

How to fix it?

Regularized integral!
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Regularizing the harmonic series

The harmonic series
∑

n≥1 1/n diverges. Here are two ways to
regularize it that both suggest assigning it the finite value
γ = .5772 . . . , which is Euler’s constant.
1. Truncate the series and subtract the divergent part. When N is
large,

N∑
n=1

1

n
= logN + γ +

1

2N
− 1

12N2
+ · · · ,

so if we remove the divergent main term logN and then let
N → ∞, the right side tends to its constant term γ.
2. Insert a parameter and subtract the divergent part. When
s > 1, the series

∑
n≥1 1/n

s converges. When s → 1+,∑
n≥1

1

ns
= ζ(s) =

1

s − 1
+ γ + c1(s − 1) + c2(s − 1)2 + · · · ,

so if we remove the divergent main term 1/(s − 1) and then let
s → 1+, the right side tends to its constant term γ.
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Fourier expansion of E (z , s)

The intuition is to throw out some “unimportant” part of
E (z , s) for our purpose that leads to the divergence.

Since E (z , s) is Γ-invariant in z and

(
1 1
0 1

)
∈ Γ, with effect

z 7→ z + 1, E (z + 1, s) = E (z , s). So E (z , s) also has a
Fourier expansion

E (z , s) =
∑
n≥0

an(y , s)e
2πinx . (z = x + iy)

an(y , s) =
∫ 1
0 E (z , s)e−2πinxdx . By a computation, the

constant term a0(y , s) is

a0(y , s) = y s +
ζ∗(2s − 1)

ζ∗(2s)
y1−s (Re(s) > 1),

where ζ∗(s) = π−s/2Γ(s/2)ζ(s).

an(y , s) with n > 0 is rapidly decaying when y → ∞.
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Truncation operator I

Recall a0(y , s) = y s + ζ∗(2s−1)
ζ∗(2s) y1−s (Re(s) > 1).

Since a0(y , s) grows like |y s | when Re(s) > 1, which is not
rapidly decaying, a natural idea is to throw out a0(y , s) and
integrate the remaining terms.

This leads to the definition of a truncation operator.

Let F = {z ∈ H||z | ≥ 1, |x | ≤ 1
2} be a fundamental domain

of Γ\H.

For T ≥ 1, let FT = {z ∈ H||z | ≥ 1, |x | ≤ 1
2 , y ≤ T} be a

truncated fundamental domain.
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Truncation operator II

Definition (Zagier 1981)

Let χT be the indicator function of FT : for z ∈ F ,

χT (z) =

{
1 if z ∈ FT ,

0 if z /∈ FT .

For T ≥ 1 and F (z) =
∑

n≥0 an(y)e
2πix smooth on F , the

truncation operator ΛT on F is defined as

(ΛTF )(z) = F (z)− χT (z)a0(y), for z = x + iy .

(ΛTF )(z) is a function that decays rapidly as y → ∞ (x
fixed).
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Regularized integrals

Theorem (Zagier 1981)

The integral
∫
F ΛT (E (z , s))dµ(z) abs. conv. and equals

P(T ) :=
1

s − 1
T s−1 − ζ∗(2s − 1)

s · ζ∗(2s)
T−s .

The regularized integral
∫ ∗
F E (z , s)dµ is defined as the

constant term of P(T ).

This suggests ∫ ∗

F
E (z , s)dµ = 0.

Remark

The regularized period integral throws out
∫∞
0 y s−2dy in the

formal computation.
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p-adic fields

There are other kinds of absolute values on Q: the p-adic
absolute values | · |p for prime p. Denote the usual absolute
value as | · |∞.

Let a = pmb ∈ Z− {0}, where p, b,m ∈ Z and (p, b) = 1.
The p-adic absolute value of a is defined as |a|p = 1

pm (e.g.

|18|∞ = 18, |18|3 = 1
9 , |18|5 = 1.)

The completion of Q wrt | · |p is the p-adic field Qp.

Qp is a locally compact topological field.

The ring of p-adic integers Zp is defined as

Zp := {x ∈ Qp||x |p ≤ 1}.

Zp is a compact topological ring.

Fact (Ostrowski 1916) Every nontrivial absolute value on Q is
equivalent (induces the same topology) to some | · |p or | · |∞.



Introduction Toric periods

Ring of Adeles

We want a “machine” that contains Qp for all prime p and R.
The natural guess is R×

∏
p
Qp. However, this is too large: it

is not locally compact for the product topology.

Restrict coordinates to get the adeles AQ:

AQ :=

{
(x∞, x2, x3, x5, · · · ) ∈ R×

∏
p

Qp

∣∣∣∣∣xp ∈ Zp, for a.e. p

}
,

here a.e. means almost every prime: all but finitely many p.

AQ is a locally compact ring in a suitable topology.

Z ⊂ R discrete, Z\R compact; Q ⊂ AQ discrete, Q\AQ
compact.

Q× ⊂ A×
Q discrete, Q×\A×

Q NOT compact.

(A×
Q)

1 := {x ∈ A×
Q||x | = 1}, Q\(A×

Q)
1 compact.
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Automorphic forms on GL2, I

Let B2 =

{(
∗ ∗
0 ∗

)
∈ GL2

}
, T2 =

{(
∗ 0
0 ∗

)
∈ GL2

}
,

N2 =

{(
1 ∗
0 1

)
∈ GL2

}
. We call T2 a torus.

Let GL2(AQ)
1 := {g ∈ GL2(AQ)|| det(g)| = 1}, which is a

locally compact topological group.
GL2(Q) is discrete in GL2(AQ)

1, like Q× in (A×
Q)

1.

The quotient space GL2(Q)\GL2(AQ)
1 has a natural

invariant measure dg and has finite volume like Γ\H. But it is
not compact.
An automorphic form is a C-valued function ϕ in
L2(GL2(Q)\GL2(AQ)

1). This generalizes modular forms.
A cusp form ϕ is an automorphic form that satisfies∫

N2(Q)\N2(AQ)
ϕ(ng)dn = 0.

This generalizes cuspidal modular forms.



Introduction Toric periods

Automorphic forms on GL2, II

Let [GL2] denote GL2(Q)\GL2(AQ)
1.

Since [GL2] is not compact, get

L2([GL2])) = L2disc([GL2])⊕ L2cont([GL2]).

The cusp forms span a closed subspace L2cusp([GL2]) of
L2([GL2]).

Fact (Gelfand and Piatetski-Shapiro)

L2cusp([GL2]) ⊊ L2disc([GL2]).

Fact (Moeglin and Waldspurger) The orthogonal
complement of L2cusp([GL2]) in L2disc([GL2]) can be
constructed using residues of some Eisenstein series.

Fact (Langlands):
L2cont([GL2]) is “spanned by” Eisenstein series.
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Automorphic forms on GL2, III

Definition

Let A∞
B2

=

{(
a 0
0 d

)
∈ GL2(R)|a > 0, d > 0

}
and let

aB2 = Lie(A∞
B2
) ∼= R2.

There is a canonical map HB2 : GL2(A) → aB2 .

For each φ ∈ L2cusp(A
∞
B2
T2(Q)N2(AQ)\GL2(AQ)),

g ∈ GL2(AQ) and λ ∈ a∗B2,C, the Eisenstein series E (g , φ, λ)
is defined as

E (g , φ, λ) =
∑

γ∈B2(Q)\GL2(Q)

φ(γg) exp ⟨λ,HB2(γg)⟩.

The summation in the definition is absolutely convergent if
Re(λ) belongs to a suitable cone in a∗B2

.

Langlands proved the meromorphic continuation of E (g , φ, λ)
in 1976. In 2019, Bernstein and Lapid gave a new proof of it.
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Toric periods of discrete spectrum

Let G = GL2 and H = T2 = {( ∗ 0
0 ∗ )} ⊂ GL2 (H is a torus).

For an automorphic form ϕ on G , we are interested in the
toric period:

PH(ϕ) =

∫
H(Q)\H(AQ)∩G(AQ)1

ϕ(h)dh.

If ϕ is a cusp form, this is absolutely convergent [Ash,
Ginzburg, Rallis 1993]. In 1993, Friedberg and Jacquet proved
a relation between PH(ϕ) and values of some L-function.

If ϕ is a noncuspidal automorphic form in the discrete
spectrum, Yang computed the regularized toric period and
proved that it is factorizable in 2022.

Hence, only PH(ϕ) for ϕ in the continuous spectrum remains
to be considered.
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Formal computations

We begin by formal unfolding computations.
In these computations, ignore the superscript “1”.
Let φλ(g) = φ(g) exp(⟨λ,HB2(g)⟩) and Hη = H ∩ η−1B2η for
η ∈ G (Q).∫

H(Q)\H(AQ)
E (g , φ, λ)dh

=

∫
H(Q)\H(AQ)

∑
γ∈B2(Q)\G(Q)

φλ(γh)dh

=

∫
H(Q)\H(AQ)

∑
η∈B2(Q)\G(Q)/H(Q)

∑
γ∈Hη(Q)\H(Q)

φλ(ηγh)dh

=
∑

η∈B2(Q)\G(Q)/H(Q)

∫
Hη(Q)\H(AQ)

φλ(ηh)dh.
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Another type of period integrals

∫
H(Q)\H(AQ)

E (g , φ, λ)dh =
∑

η∈B2(Q)\G(Q)/H(Q)

∫
Hη(Q)\H(AQ)

φλ(ηh)dh.

Definition

For η ∈ B2(Q)\G (Q)/H(Q),
φ ∈ L2cusp(A

∞
B2
T2(Q)N2(AQ)\GL2(AQ)) and λ ∈ a∗B2,C, the

integral

J(η, φ, λ) :=

∫
Hη(Q)\H(AQ)

φλ(ηh)dh.

is called the intertwining period associated to η.

Theorem (S. 2024)

J(η, φ, λ) is absolutely convergent for Re(λ) in certain open cone
in a∗B2

.



Introduction Toric periods

Regularized periods, I

In 2019, Zydor defined a relative truncation operator ΛT for
T in suitable open cone of aB2 as an operator from the space
of moderate growth functions on G (Q)\G (AQ) to the space
of rapidly decaying functions on H(Q)\H(AQ).

It is a vast generalization of the truncation used by Zagier.

For any automorphic form ϕ on G , Zydor showed the integral∫
H(Q)\H(AQ)

(ΛTϕ)(h)dh

is absolutely convergent.
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Regularized periods, II

Theorem (Zydor 2019)

Fix ϕ. The truncated period integral
∫
H(Q)\H(AQ)

(ΛTϕ)(h)dh

is an exponential polynomial function of T . Explicitly, it
equals a finite sum ∑

λ∈a∗B2,C

Pλ(T ) exp(⟨λ,T ⟩),

where Pλ(T ) is a polynomial in T .

P0(T ) is a constant.

The regularized period integral is defined as∫ ∗

H(Q)\H(AQ)
ϕ(h)dh := P0(T ).
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The main result for GL2

Theorem (S. 2024)

We have the following identity:∫ ∗

H(Q)\H(AQ)
E (h, φ, λ)dh = J(η, φ, λ),

for some η ∈ B2(Q)\G (Q)/H(Q) in the open orbit.

Remark

The theorem gives a rigorous justification of the “unfolding”.

By this identity and meromorphic continuation and functional
equation of E (h, φ, λ), we can get the meromorphic
continuation and functional equation of J(η, φ, λ).

The work for GL2 and T2 = GL1×GL1 extends to GLn+m

and GLn ×GLm.
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Thank you!
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